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Abstract: Consideration is given to the use of the term "increased valence" when it is applied to the valence structure Y—A-B 
(I) relative to the standard valence-bond structure Y—A B (II), each structure having_a set of four electrons and three overlap
ping atomic orbitals (y, a, and b). One type of wave function for I is \ya<pai,b\ + \yaipabb\ with 4>ab — a + kb and 0 < k < <*>. 
From this wave function, it is deduced that a maximum of three electrons may simultaneously participate in bonding for I, and 
that for 1 < A: < °=, the valence for A in I may exceed its value of unity in II. Therefore on at least two counts, I may be desig
nated as an "increased-valence" structure relative to II. This point of view is contrasted with that expressed recently by HaI-
gren et al. (ref 2). 

The use of the term "increased valence"1 when it is ap
plied to the general valence structure 1 has recently been 
questioned.2 This structure may be constructed 1,3c~e whenever 
four electrons are distributed among three overlapping atomic 
orbitals centered on the three atoms Y, A, and B. For example, 
each set of four 2p-7r and 2p7r' electrons of N2O has the electron 
distribution of 1 in the valence structure 2. Although ten 
electrons seem somehow to be involved in bonding to the cen
tral nitrogen atom, an apparent33-'6 rather than a real violation 
of the octet rule occurs in a minimal basis set description of 2. 
Here I shall demonstrate that the designation of "increased 
valence" for valence structures 1 and 2 is appropriate in two 
senses, namely, (1) that more electrons participate in bonding 
for 1 and 2 than occur in the Lewis valence-bond structures 3 
and 4 with electron-pair bonds, and (2) that the valence of the 
A atom in 1 and 2 can exceed that of unity and four for the 
same atom in 3 and 4. 

Y—A • B : N = N ^ - 0 : Y — A :M=N 6: 

of the A-atom atomic orbital when localized molecular orbitals 
(or bond orbitals) are used to describe the YA and AB bonding 
electrons of 1. From an examination of the Heitler-London 
type wave function for 1, Halgren et al.2 have attempted to 
demonstrate the converse of the second proposition. 

For valence structures 3 and 1, the S = O wave functions are 
given by5,6 eq 1 and 2, respectively, in which y, a, and b are the 
overlapping atomic orbitals centered on the Y, A, and B atoms, 
and \pab = {a + kb)/{\ + k2yi2 is the AB bonding molecular 
orbital that accommodates the electron of the AB bond of 1. 
The Slater determinants of eq 1 and 2 generate the electron 
spin distributions (x == sz = + 1Ii, o = S7 = — V2) of 5 and 6 for 

A B 
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To demonstrate these propositions, we shall use Heitler-
London rather than localized molecular orbital procedures to 
describe the YA bonding for 1 and 3, thereby avoiding an effect 
that is associated4 with electron spin and the overutilization 
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3 and 1, respectively. The corresponding electron spin distri
butions for the N26 structures 4 and 2 are those of 7 and 8, 
respectively.7 

*(Y—AB) = (!ya&6| + !ya6b|)/2"2 (1) 

*(Y— A-B) = (\yUabb\ + \ya4>abb\)l2"> (2) 

To demonstrate the validity of proposition 1, it is helpful to 
invoke a unitary transformation of the a and b orbitals within 
each of the Slater determinants of eq 2, thereby obtaining eq 
3, which is equivalent to eq 2. The \p*ab = (ka — b)/(l + 
k2)xl2 of eq 3 is the AB antibonding molecular orbital which 
is orthogonal to the bonding molecular orbital \pab-

¥ ( Y _ A . B) = (\y**abyPab$abI 
+ \yrabtabtab\)ll"2 (3) 

Inspection of eq 3 reveals that the y and \p*ab electrons are 
spin paired in a Heitler-London manner. Because the orbitals 
overlap, these two electrons must therefore be involved in 
(fractional) YA and YB bonding. A third electron in each of 
the Slater determinants of eq 3 is also involved in AB bonding, 
namely, the \pab electron whose spin is opposed to that of the 
\p*ab electron. (It is this \pab electron that forms the one-elec
tron AB bond of 1, 6a, and 6b.) Therefore in valence structure 
1, a total of three electrons simultaneously participate in YA, 
YB, and AB bonding, whereas 3 has only two bonding elec
trons, namely, those that form the YA bond. Similarly for the 
N2O valence structures 2 and 4, it is easy to deduce that a total 
of ten and eight electrons, respectively, participate in bonding. 
Therefore, with respect to proposition 1, valence structures 1 
and 3 qualify to be designated as "increased-valence" struc
tures, and they shall be referred to as such in the following 
discussions. 

Inspection of "increased-valence" structure 1, and more 
particularly the electron spins for it in 6a and 6b, suggests that 
proposition 2 may also be valid,8 because three spin orbitals 
(and hence three electrons) are somehow involved in bonding 
to A, whereas there are only two spin orbitals and electrons 
similarly involved in 3. However, a comparison of the valence 
for A in 1 and 3 requires quantification. Halgren et al. have 
pointed out that whether or not an increase in atomic valence 
does occur depends on how valence is defined.2 In the present 
context, the valence for A is that which pertains for the AB 
Pauling "three-electron bond" configurations that occur in the 
Slater determinants of eq 3, namely, those of eq 4. For each of 
these configurations, there are two components to the valence 
of A. These arise from the two electrons that occupy theip*ab 
orbital and the \pab orbital with spin opposed to that of ^p*ab and 
(as we shall now show) represent the valence of A when it is 
involved in YA and AB bonding, respectively. Because the YA 
and AB bonding of eq 2 is described using Heitler-London and 
molecular orbital procedures, respectively, two different def
initions of A-atom valence are required. 

\4>*ablpab4>ab\ = \a\pabb\. \ ^abtabtab I = ^abH ( 4 ) 

The \p*ah electron generates an odd-electron charge of k2/{\ 
+ k2) for atom A. This "free valence" can spin pair with a 
corresponding fraction of the odd-electron charge of the Y 
atom of 1 (or 6a + 6b) to generate a fractional YA bond in 1. 
With respect to this bond, the A-atom valence KAY is therefore 
equal to/c2/(l + k2). For the one-electron AB bond of 1, the 
valence of A (KAB) is one-half of the valence for A when it is 
involved in the formation of an electron-pair bond and the 
molecular orbital configuration (ipab)2 is used to describe the 
latter bond. Following Halgren et al.,2 we may use the 
Armstrong et al.9 formula 2Paa - Paa

2 = Pah
2 (with Paa = 

2/(1 + k2) and Pab = 2k/{\ + k2)) to calculate the valence 
of A for the {ipab)2 configuration. We thereby obtain KAB = 

2k2/(I + k2)2 as the valence of A for the one-electron bond 
of 1. If we assume that KAY and KAB are additive, then the 
total valence for atom A in the "three-electron bond" config
urations of eq 4, and hence for "increased-valence" structure 
1, is given by K A = KAY+ KA B = £:2/(l +k2) + 2k2/(\ + 
k2)2. For 1 < k2 < <», KA > 1, i.e., according to this procedure 
for calculating atomic valence, the valence of A in 1 may be 
increased relative to its value of unity in 3. A similar conclusion 
was reached in earlier papers by summing the YA bond 
number (N{y,a) = k2/{\ + k2)) and the AB bond order (k/(\ 
+ k2)) for I,10 although the use of bond orders to deduce "in
creased valence" is considered to be less satisfactory.2 For 
"increased-valence" structure 2, the A-atom valence of 2 + 
2\k2/(\ + k2) + 2A:2/(1 + k2)2\ has a maximum value of 4.25 
when k2 = 3, thereby exceeding the valence of four for the 
same atom in the Lewis structure 4. 

A similar procedure may be used to calculate the valence 
for atom B in 1, namely, K 8 = KBY + KBA = I/O + k2) + 
2k2J{\ + k2)2. With KY = KYA + KYB = 1, the sum of the 
three atomic valencies (KY + KA + KB = 2 + 4A:2/(1 + A:2)2) 
has a maximum value of 3 when k = 1. This number is in ac
cord with the deduction from eq 3 that a maximum of three 
electrons may participate in bonding in "increased-valence" 
structure 1. 

The fractionality for the YA and YB bonding of "in
creased-valence" structure 1 may also be demonstrated by 
expanding eq 2 in terms of the valence-bond wave functions 
of eq 5. The resulting weights for the valence-bond structures 
3 and 9, namely, A:2/(l + A:2) and 1/(1 + k2), give the YA and 
YB bond numbers.10 They correspond to the fractional 
valencies KYA and KYB- Halgren et al.2 also remark that the 
YA bond of eq 2 is a partial bond, although it is not fractional 
in the sense that they have defined the term (i.e., as in ref 4). 
The fractionality for eq 2 arises because the odd electron of the 
A-B component of I (or 6a and 6b) is distributed over two 
atomic centers, and therefore less than one electron is available 
for the A atom to form a complete YA electron-pair bond. 

* ( Y — A - B ) = { k(\yabb\ + \yabb\) + (\yaab\ 

+ ry^&|)}/{2(i + fe3)}"2 (5) 

= { Ze^(Y-A B) + *(Y A B)} /(I + k2)"2 

Y K B :Nz=;N O: i N = = N O: :N N CX 

9 10 11 12 

For a number of electron-rich molecules, the results of va
lence-bond calculations11 support the hypothesis3d that certain 
"long-bond" structures of the general type 9 (for example, 
10-12) may often have appreciable ground-state weights. 
Inspection of eq 5 shows that "increased-valence" structures 
summarize resonance between standard valence-bond struc
tures (such as 3 and 4) and "long-bond" structures. With this 
type of wave function, the octet rule is obeyed by the "long-
bond" structure(s) if it is obeyed by the standard struc
ture.3d 

The additional stability of "increased-valence" structures 
relative to the standard valence-bond structures has been 
discussed on numerous occasions elsewhere. '-3^7 
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Introduction 
The chemical bonding in nitrosyl fluoride (ONF) has been 

a matter of considerable interest. In Table I experimental bond 
distances, bond dissociation energies, infrared data, and dipole 
moments are given for N-O, N-F, and O-F bonded mole
cules. ' "45 It is seen that the N-O bond distance of ON F (1.136 
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of 1.06 A). The N-O stretching frequency is the same as in 
NO. No other molecules, with the possible exception of 0NF2+ 

and NOF, have such a short N-O bond distance or high N-O 
stretching frequency. Similarly, comparing ONF with other 
N-F bonded molecules, one finds from Table I that the N-F 
bond distance of ONF is much longer (1.512 A) than for other 
N-F bonded molecules, and that the N-F stretching frequency 
is unusually low. The dipole moment is rather large. 
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6 distance shorter than for the NO molecule. Pauling concluded 
it that the nitrosyl group is less electronegative than either ni-
e trogen or oxygen, owing to the high stability of the N=O triple 
n bond (79 kcal/mol). Linnett47 considered the N-F bond in 
f ONF to be a one-electron bond, thereby accounting for its 
D unusual bond distance. In his scheme, the atoms assume formal 
T charges of'/2 for O and-V2 for F. 
F Spratley and Pimentel48 used a molecular orbital approach 
T to describe the bonding and some physical properties of a series 
y of molecules XNO (X = H, F, Cl, Br, Li, etc.). In this scheme, 

the X-N bonding is due to the overlap of the lone p electron 
e of X (s for H, Li, etc.) with the singly occupied ir* orbital of 
d NO. Changes in the N-O bond length, stretching frequency, 
e and force constant are attributed to the electronegativity of the 
5 X group. Strongly electronegative X groups should withdraw 
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